inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fu Qiang Huang and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study T = 153 KMean $\sigma(V-O) = 0.003 \text{ Å}$ R factor = 0.017 wR factor = 0.044 Data-to-parameter ratio = 19.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Na₃VOS₃

The title compound, trisodium vanadium oxide trisulfide, has been synthesized by the reaction of the elements in an Li₂O/Na₂S flux at 723 K. The structure comprises isolated tetrahedral VOS₃³⁻ anions separated by Na⁺ cations. The anion has symmetry *m*. Bond distances include V–O = 1.673 (2) Å, and V–S = 2.1746 (4) and 2.1971 (6) Å. Each Na⁺ cation is coordinated in a distorted octahedron by one O and five S atoms.

Comment

Many compounds of the type A_3MQ_4 (A = alkali metal, M = group 5 or 15 element, and Q = S, Se) have been synthesized. The compounds K₃VS₄ (van den Berg & de Vries, 1964), K₃NbS₄ (Latroche & Ibers, 1990), K₃TaS₄ (Krause *et al.*, 1998), Cs₃NbSe₄ (Yun *et al.*, 1988), Cs₃TaSe₄ (Yun *et al.*, 1988), Rb₃AsSe₄ (Wachhold & Sheldrick, 1996), Rb₃SbS₄ (Bensch & Dürichen, 1996), Rb₃SbSe₄ (Wachhold & Sheldrick, 1996), Rb₃SbSe₄ (Emirdag-Eanes & Ibers, 2001), and Cs₃VS₄ (Emirdag-Eanes & Ibers, 2001) have the K₃VS₄ structure type. The compounds K₃SbS₄ (Bensch & Dürichen, 1997), K₃AsS₄ (Palazzi *et al.*, 1974), K₃SbSe₄ (Eisenmann & Zagler, 1989), (NH₄)₃SbS₄ (Wachhold & Sheldrick, 1996), Na₃VS₄ (Klepp & Gabl, 1997), and Na₃NbS₄ (Niewa *et al.*, 1998) have different structure types.

All these compounds are composed of isolated MQ_4^{3-} tetrahedral anions separated by the A^+ cations. There are no Q-Q or M-M bonds in these structures. Therefore, the oxidation states of A, M and Q are 1+, 5+, and 2-, respectively. These compounds crystallize in the orthorhombic,

Figure 1

A perspective view of Na_3VOS_3 along [001]. The VOS_3 anion is plotted in the polyhedral representation (yellow), O atoms are shown as white spheres, S atoms as red spheres and Na atoms as blue spheres.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 3 December 2003

Online 24 December 2003

Accepted 16 December 2003

tetragonal, or cubic systems. Their structures depend on the packing of the anions and cations, and hence on the sizes of the ions. For example, the space group of Na₃VS₄ is $P\overline{4}2_1c$ (Klepp & Gabl, 1997), that of K₃VS₄ is Pnma (in standard setting) (van den Berg & de Vries, 1964), and that of Na₃NbS₄ is Fdd2 (Niewa et al., 1998). Thus, both the A and M cations affect the final structure.

The compound Na₃VOS₃ described here crystallizes in space group $Cmc2_1$ of the orthorhombic system with four formula units in the cell (Fig. 1). The structure contains discrete Na⁺ cations and tetrahedral VOS₃³⁻ anions, instead of VS_4^{3-} anions as in Na₃VS₄. Bond distances include V–O = 1.673 (2) Å, and V-S = 2.1746 (4) and 2.1971 (6) Å. The VOS_3^{3-} anion is also found in $Ba_6V_4O_5S_{11}$ (Litteer *et al.*, 1997), where the corresponding bond distances are 1.682(9), and 2.140 (4) and 2.169 (3) Å. The structure of Na_3VOS_3 is closely related to that of K_3SbS_4 (Bensch & Dürichen, 1997), which also crystallizes in space group $Cmc2_1$. However, in Na₃VOS₃ the two crystallographically independent Na⁺ cations are each coordinated by one O and five S atoms in a distorted octahedron, whereas in K₃SbS₄ the two unique K⁺ cations are coordinated by six and by seven S atoms.

Experimental

The compound Na₃VOS₃ was synthesized by the solid-state reaction of the elements in an Li₂O/Na₂S flux at 723 K. The mixture of 1.0 mmol V (Johnson Matthey Electronics, 99.5%), 5.0 mmol S (Alfa Aesar, 99.5%), 1.2 mmol Li₂O (Aldrich, 99+%), and 2.0 mmol Na₂S (Aldrich, 99%) was loaded into a fused-silica tube under an argon atmosphere in a glove-box. The tube was sealed under 10^{-4} Torr and then placed in a computer-controlled furnace. The sample was heated to 723 K at 5 K min⁻¹, kept at 723 K for 3 d, annealed at 0.05 K min⁻¹ to 373 K, then cooled to room temperature. The reaction mixture was washed with dimethylformamide. In the reaction, the major component consisted of red flat needles of Na₃VOS₃. Analysis of these needles with an EDX-equipped Hitachi S-3500 SEM showed only the presence of Na, V, and S in the approximate ratio of 3:1:3. The compound is very sensitive to moisture and decomposes in water or acetone.

Crystal data

Na₃(VOS₃) $M_r = 232.09$ Orthorhombic, Cmc2₁ a = 9.6673 (11) Ab = 11.9122 (14) Åc = 5.8846 (7) Å $V = 677.66 (14) \text{ Å}^3$ Z = 4 $D_x = 2.275 \text{ Mg m}^{-3}$

Data collection

Bruker SMART 1000 CCD diffractometer $0.3^{\circ} \omega$ scans Absorption correction: by integration (XPREP in SHELXTL; Sheldrick, 2000) $T_{\rm min}=0.337,\ T_{\rm max}=0.902$ 3902 measured reflections

Mo $K\alpha$ radiation Cell parameters from 3805 reflections $\theta = 2.7 - 28.8^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 153 (2) KFlat needle, red $0.58 \times 0.16 \times 0.04 \text{ mm}$

872 independent reflections 867 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.023$ $\theta_{\rm max} = 28.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -7 \rightarrow 7$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.006$	
$R[F^2 > 2\sigma(F^2)] = 0.017$	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$	
$wR(F^2) = 0.044$	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$	
S = 1.15	Extinction correction: SHELXTL	
872 reflections	Extinction coefficient: 0.0009 (5)	
44 parameters	Absolute structure: Flack (1983)	
$w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$	Flack parameter $= 0.21$ (2)	
where $P = (F_o^2 + 2F_c^2)/3$		

Table 1

Selected geometric parameters (Å, °).

Na1-O	2.3228 (19)	Na2-S2 ^{iv}	2.8504 (9)
Na1-S1 ⁱ	2.8198 (10)	Na2-S2 ^v	2.9111 (7)
Na1-S1 ⁱⁱ	2.8403 (12)	Na2-S2 ^{vi}	3.0439 (9)
Na1-S2	3.0063 (5)	Na2-S2	3.2125 (7)
Na1-S2 ⁱⁱⁱ	3.0063 (5)	V-O	1.6726 (18)
Na1-S1	3.0443 (12)	V-S2 ^{vi}	2.1746 (4)
Na2-O	2.3128 (10)	V-S1	2.1971 (6)
Na2-S1 ^{iv}	2.8361 (7)		
$O-V-S2^{vi}$	107.23 (3)	O-V-S1	106.91 (5)
$S2^{vi}-V-S2^{vii}$	115.15 (2)	$S2^{vi}-V-S1$	109.968 (17)

Symmetry codes: (i) $2 - x, 2 - y, \frac{1}{2} + z$; (ii) x, y, 1 + z; (iii) 2 - x, y, z; (iv) $\frac{3}{2} - x, \frac{3}{2} - y, \frac{1}{2} + z;$ (v) $\frac{3}{2} - x, y - \frac{1}{2}, z;$ (vi) $\frac{3}{2} - x, \frac{3}{2} - y, z - \frac{1}{2};$ (vii) $\frac{1}{2} + x, \frac{3}{2} - y, z - \frac{1}{2}$.

387 Friedel pairs were used for the refinement, which gave 0.79(2)/0.21 (2) for the enantiomeric twin ratio.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXTL.

This research was supported by NSF grant DMR00-96676. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

- Bensch, W. & Dürichen, P. (1996). Z. Kristallogr. 211, 636.
- Bensch, W. & Dürichen, P. (1997). Z. Kristallogr. 212, 95-96.

Berg, J. M. van den & de Vries, R. (1964). Proc. K. Ned. Akad. Wet. Ser. B, 67, 178 - 180

- Bruker (2000). SMART (Version 5.054) and SAINT-Plus (Version 6.22A). Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Eisenmann, B. & Zagler, R. (1989). Z. Naturforsch. Teil B, 44, 249-256.
- Emirdag-Eanes, M. & Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216,
- 489-490
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Klepp, K. O. & Gabl, G. (1997). Eur. J. Solid State Inorg. Chem. 34, 1143-1154. Krause, O., Näther, C., Jess, I. & Bensch, W. (1998). Acta Cryst. C54, 902-904.
- Latroche, M. & Ibers, J. A. (1990). Inorg. Chem. 29, 1503-1505.
- Litteer, J. B., Fettinger, J. C. & Eichhorn, B. W. (1997). Acta Cryst. C53, 163-165.
- Niewa, R., Vajenine, G. V. & DiSalvo, F. J. (1998). J. Solid State Chem. 139, 404-411.
- Palazzi, M., Jaulmes, S. & Laruelle, P. (1974). Acta Cryst. B30, 2378-2381.
- Sheldrick, G. M. (2000). SHELXTL. DOS/Windows/NT Version 6.12. University of Göttingen, Germany.
- Wachhold, M. & Sheldrick, W. S. (1996). Z. Naturforsch. Teil B, 51, 32-36.
- Yun, H., Randall, C. R. & Ibers, J. A. (1988). J. Solid State Chem. 76, 109-114.